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a b s t r a c t

Sulfidogenic treatment of sulfate (2–10 g/L) and zinc (65–677 mg/L) containing simulated wastewater was
studied in a mesophilic (35 ◦C) CSTR. Ethanol was supplemented (COD/sulfate = 0.67) as carbon and energy
source for sulfate-reducing bacteria (SRB). The robustness of the system was studied by increasing Zn,
COD and sulfate loadings. Sulfate removal efficiency, which was 70% at 2 g/L feed sulfate concentration,
steadily decreased with increasing feed sulfate concentration and reached 40% at 10 g/L. Over 99% Zn
removal was attained due to the formation of zinc-sulfide precipitate. COD removal efficiency at 2 g/L feed
sulfate concentration was over 94%, whereas, it steadily decreased due to the accumulation of acetate at
higher loadings. Alkalinity produced from acetate oxidation increased wastewater pH remarkably when
feed sulfate concentration was 5 g/L or lower. Electron flow from carbon oxidation to sulfate reduction
Zinc removal
Artificial neural network

averaged 83 ± 13%. The rest of the electrons were most likely coupled with fermentative reactions as the
amount of methane production was insignificant. The developed ANN model was very successful as an
excellent to reasonable match was obtained between the measured and the predicted concentrations of
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. Introduction

Mining and metallurgical industries produce large volumes of
astewater containing high concentrations of sulfate and met-

ls (e.g. acid mine drainage (AMD)) [1]. Conventionally, hydroxide
recipitation is the most commonly applied method for the treat-
ent of metal-containing waters. The production of high quantities

f sludge is the main disadvantage of the method. Also, sulfate
emoval is only possible when Ca2+ containing chemicals, such as
ime, are used for neutralization. However, stringent discharge leg-
slations will dictate more efficient sulfate removal and recovery
f valuable metals from waters, which are possible with the use of
ctive bioreactor processes [2].

In the treatment of AMD and metal-containing industrial
astewater, sulfate-reducing bioreactors are becoming an alterna-

ive to conventional chemical treatment (for a review, see [2]). With
he supplementation of organic compounds, sulfate is microbially

educed to H2S under anaerobic conditions and heavy metals form
table precipitates with produced H2S. Moreover, produced bicar-
onate increases the pH of the wastewater (Eqs. (1) and (2)). This
ay, metals and sulfate are concomitantly removed and pH can be
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3), acetate (R = 0.976) and zinc (R = 0.827) in the CSTR effluent.
© 2008 Elsevier B.V. All rights reserved.

ncreased to neutral values in a single reactor (Eqs. (1) and (2)). The
recipitate can be used for metal recovery [3,4]:

O4
2− + 2CH2O → H2S + 2HCO3

− (1)

2S + M2+ → MS(s) + 2H+ (2)

n the literature several studies have been conducted on the
reatment of AMD using different attached growth reactor configu-
ations [3–10]. The competition between sulfate-reducing bacteria
SRB) and methanogenic archaea (MA) can be controlled in cell
uspension bioreactors based on their growth kinetics [11]. Cell
uspension bioreactors also allow the recovery of metal-sulfide pre-
ipitates at the effluent of the reactor without accumulation within
he bioreactor. Also, start-up time of cell suspension bioreactor may
e shorter than attached growth reactor systems as the yield coeffi-
ient of biomass may be higher (due to lower sludge retention time
SRT)) and biomass granulation is not required.

The modelling of metal recovering bioprocesses is very impor-
ant to optimize operational conditions of the reactor. However, it is
ery difficult to predict the performance of such a bioprocess with
he classical approaches as the performance depends on several

actors, such as wastewater composition, operational parameters
f the reactor and the microbial community. When circumstances
r processes are not understood well enough or parameter determi-
ation is unpractical, there is a distinctive advantage for black-box
odelling [12]. Black-box models like artificial neural network

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:erkansahinkaya@yahoo.com
dx.doi.org/10.1016/j.jhazmat.2008.07.130
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Table 1
Composition of synthetic feed containing 2000 mg/L SO4

2−

Component Concentration

MgSO4·7H2O (mg/L) 2563
Na2SO4 (mg/L) 1479
Ethanol (mg/L) 642
Yeast extract (mg/L) 50
KH2PO4 (mg/L) 56
NH4Cl (mg/L) 110
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Fig. 1. Schematic diagram of CSTR.

ANN) are very attractive. They do not require prior knowledge
bout the structure and relationships that exist between important
ariables. Moreover, their learning abilities make them adaptive to
ystem changes.

In this context, this study aims at investigating sulfidogenic zinc
emoval from a simulated wastewater using a mesophilic ethanol-
ed completely stirred tank reactor (CSTR). The reactor performance
as investigated at different feed pH values and increased load-

ngs of sulfate, ethanol and zinc, which is present in effluents
rom various industries, such as galvanization, electroplating, man-
facture of batteries and other metallurgical industries. Also, the
erformance of the reactor was modelled by a popular neural
etwork-back-propagation algorithm. To my knowledge, this is the
rst study on ANN modelling of zinc recovering sulfidogenic biore-
ctor.

. Materials and methods

.1. Bioreactor

A laboratory scale CSTR (Fig. 1) inoculated with an anaerobic
igester effluent was used in the study. To maintain anaerobic con-
itions, the glass lids of the reactor and the other fittings were
ealed after inoculation. The reactor was maintained in an incu-
ator at 35 ◦C and it was mixed using a magnetic stirrer at 400 rpm.
he working volume of the reactor was 500 mL. Hydraulic and
ludge residence times were kept constant at 10 days throughout
he study. To do this, the reactor was fed batch-wise with synthetic
astewater (Table 1) at a rate of 50 mL/day. After daily feeding, high
urity N2 gas was passed through the reactor to exclude oxygen gas
oming with feed and to strip excess H2S. The stripped CO2 and H2S
ere trapped in 4% NaOH solution. Produced methane was mea-

ured using a liquid displacement method (Fig. 1). Safety bottle was
sed to avoid the vacuum of NaOH to the bioreactor. Ethanol was

sed as a carbon and electron source stoichiometrically to reduce
ulfate to hydrogen sulfide and oxidize ethanol and its major by-
roduct, acetate, to CO2. Hence, throughout the study COD/SO4

2−

atio was kept at 0.67.

C

H
w

able 2
perational conditions of the reactor

arameter Period I Period II

ays 0–28 28–42
eed sulfate concentration (mg/L) 2000 2000
eed ethanol concentration (mg COD/L) 1360 1360
eed zinc concentration (mg/L) 0 65
eed pH 7.0–7.2 5.25–5.35
scorbic acid (mg/L) 11
H 4.4–7.2

or higher sulfate and ethanol concentrations, synthetic medium was concentrated.

.2. Experimental procedure

The reactor performance was investigated at different feed
rganic, sulfate and zinc loadings for 159 days (Table 2). Firstly,
he reactor was fed with an alkaline solution containing 2000 mg/L
O4

2− without zinc (Period I, days 0–28) to enrich sulfate-
educing bacteria. Then, the reactor performance was investigated
t increased zinc, sulfate and organic loadings (Table 2).

Settleability of zinc sulfide particles was also studied when feed
n concentration was 325 mg/L. For this purpose, reactor content
as allowed to settle under quiescent conditions for 2 h. Then, total

inc concentration (soluble + particle) was measured in cleared
ater.

The reactor feed and effluent were sampled 3 to 4 times in 1
eek for the measurement of pH, alkalinity, acetate, chemical oxy-

en demand (COD), sulfate, sulfide, soluble zinc, suspended solids
SS) and volatile suspended solids (VSS).

.3. Modelling

In the ANN modelling of CSTR, the procedure given by Ozkaya
t al. [13] was followed. A neural network is defined as a system of
imple processing elements, called neurons, which are connected
o a network by a set of weights (Fig. 2). The network is determined
y the architecture of the network, the magnitude of the weights
nd the processing element’s mode of operation [12]. At the start of
raining, the output of each node tends to be small. Consequently,
he derivatives of the transfer function and changes in the con-
ection weights are large with respect to the input. As learning
rogresses and the network reaches a local minimum in error sur-

ace, the node outputs approach stable values. Consequently, the
erivatives of the transfer function with respect to input, as well as
hanges in the connection weights, are small [14].

In this work, a two-layer ANN with a tan-sigmoid transfer func-
ion for the hidden layer and a linear transfer function for the
utput layer were used. Fig. 2 shows the ANN structure used in
he study. Feed pH, sulfate, Zn, COD and operation time were used
OD, acetate and Zn concentrations (Table 3).
The data were divided into training, validation and test subsets.

alf of the data were used for training and one-forth of the data
as used for validation and tests.

Period III Period IV Period V Period VI

42–55 55–93 93–144 144–159
3000 5000 10,000 10,000
2010 3400 6927 6927

65 130–325 677 0
5.65–5.75 5.0–5.5 4.4–5.42 5.42
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Fig. 2. The artificial neural network (ANN) stru

.3.1. Selection of back-propagation algorithm and neuron
umber

In this study, 12 back-propagation (BP) algorithms were com-
ared to select the best fitting one. For all algorithms, a two-layer
etwork with a tan-sigmoid transfer function within the hidden

ayer and a linear transfer function within the output layer was
sed. In the selection of BP algorithm, the number of neurons
as kept constant at 20. The performance of the BP algorithms
as evaluated with the root mean square error (M.S.E.) and
etermination coefficient (R) between the modelled output and
easured data set. After selecting best BP algorithm, which
as Levenberg–Marquardt (trainlm) algorithm in this study, the
umber of neurons was optimized keeping all other parameters
onstant.

.4. Analytical techniques

Before the measurement of sulfate, sulfide, soluble zinc and COD,
amples were centrifuged at 4000 rpm for 5 min. Before centrifuga-
ion for sulfide measurement, sample pH was increased to around
0 not to cause any loss of sulfide. A turbidimetric method was

sed to measure sulfate concentrations [15]. COD, alkalinity, SS
nd VSS were also measured according to standard methods [15].
efore COD measurements, sample pH was decreased to below 2
ith concentrated H2SO4 and the sample was purged with N2 gas

round 5 min to remove H2S from the sample. Acetate concentra-

able 3
nput and output parameters in artificial neural network modelling

nput parameters (P)
P1 Feed pH
P2 Feed sulfate (mg/L)
P3 Feed Zn (mg/L)
P4 Feed COD (mg/L)
P5 Operation time (day)

utput parameters (T)
T1 Effluent sulfate (mg/L)
T2 Effluent COD (mg/L)
T3 Effluent acetate (mg/L)
T4 Effluent Zn (mg/L)
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for the prediction of CSTR effluent parameters.

ion was measured following the procedure described by Alvarez
t al. [16]. For soluble zinc measurements sample was first filtered
hrough 0.45 �m filter and then acidified with concentrated HCl
o pH below 2. For total zinc concentration measurements, sam-
les from settleability tests were first acidified with concentrated
Cl to solubilise zinc particles. Then, samples were filtered through
.45 �m to remove biomass and other particles. Zinc concentra-
ion was measured with an atomic absorption spectrophotometer
Varian AA 140).

. Results and discussion

.1. Performance of CSTR

The performance of the reactor throughout the study is summa-
ized in Fig. 3 and Table 4. Between days 0 and 28 (Period I), reactor
as fed with 2000 mg/L sulfate at pH 7.0–7.2 without zinc sup-
lementation. For the first 10 days the sulfate removal efficiency
as around 50% and it increased steadily to around 70%. When

eed sulfate concentration was increased to 3000 mg/L (Period III),
ffluent sulfate concentration increased to 1156 mg/L, correspond-
ng to 61% sulfate reduction. When feed sulfate concentration was
ncreased to 5000 (Period IV) and 10,000 mg/L (Periods V and
I), effluent sulfate concentrations at the steady state averaged
round 2500 and 6000 mg/L corresponding to 50 and 40% sul-
ate reduction, respectively (Fig. 3A and Table 4). As feed sulfate
oncentrations was increased from 2000 to 10,000 mg/L, sulfate
eduction efficiency decreased from 70 to 40%, whereas removal
ate increased from 140 to 400 mg/(L day). The specific sulfate
eduction rate increased from 523 mg sulfate/(g VSS day) at Period I
o 1077 mg sulfate/(g VSS day) at Period IV and decreased to 633 mg
ulfate/(g VSS day) at Period V. The increase in specific degradation
ate at Period IV should be due to the increased feed concentra-
ions of ethanol and sulfate. The decrease of specific degradation
ate at Period V may be due to high feed concentration of zinc. Dur-

ng the reactor operation, consistent, reliable and rapid equilibrium
onditions were achieved, which are typical for CSTR type reactors
2].

Ethanol is an effective carbon source in the treatment of metal-
ontaining wastewater by mesophilic SRB [5], whereas, relatively
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ig. 3. Sulfate (A), COD (B), acetate (C) and zinc (D) removal performance. Lines and
odel predictions. Acetate feed concentration was calculated based on the oxidatio

lower degradation rate of acetate may result in acetate accumula-
ion (Eqs. (3) and (4)):

CH3CH2OH + SO4
2− → 2CH3COO− + HS− + H+ + 2H2O (3)

H3COO− + SO4
2− → 2HCO3

− + HS− (4)

S− + Zn2+ → ZnS + H+ (5)

ccording to Eq. (3), 1 mol of ethanol consumption can produce
mol of acetate. Some SRB oxidize organic substrates completely

o CO2, while others oxidize them incompletely to acetate [17].
he main drawback of incomplete ethanol oxidation to acetate is

n effluent with significant residual COD and less electron flow
or sulfate reduction. Also, the acetate oxidation step in ethanol
xidation produces bicarbonate alkalinity (Eq. (4)), which neu-
ralizes the acidity of wastewater. Hence, low acetate oxidation
esults in low production of alkalinity and sulfide, which may not

t
t
e
w
t

oints show feed and effluent concentrations, respectively. Dashed lines show ANN
thanol to acetate.

e enough for the neutralization of acidity and the precipitation
f heavy metals (Eq. (5)). When feed sulfate concentration was
000 mg/L, the effluent acetate concentration was 70 ± 10 mg/L
Fig. 3C and Table 4). Assuming that ethanol was theoretically
onverted to acetate without further oxidation, effluent acetate
oncentration would be around 820 mg/L (Fig. 3C). Hence, acetate
xidation efficiency was higher than 90%. The effluent COD concen-
ration also supported this result as the effluent COD concentration
as 80 ± 20 mg/L corresponding to 94% removal (Fig. 3B). When

eed sulfate concentration was increased to 3000 mg/L, effluent
cetate concentration increased to around 340 mg/L corresponding

o 72% acetate removal (Fig. 3C). Similarly effluent COD concen-
ration was around 470 mg/L corresponding to 77% COD removal
fficiency (Fig. 3B and Table 4). When the sulfate concentration
as increased to 5000 mg/L (Period IV), effluent acetate concen-

ration averaged 1300 mg/L corresponding to around 36% removal
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ig. 4. Steady-state acetate removal performance at different feed sulfate concen-
rations.

Fig. 3C). Similarly, effluent COD concentration averaged around
500 mg/L corresponding to around 60% removal (Fig. 3B). Hence,
igh effluent COD concentration at high loadings was due to accu-
ulation of acetate according to Eq. (3). When sulfate concentration
as 10,000 mg/L (Periods V and VI), effluent acetate concentration

ncreased to 3800 ± 300 mg/L corresponding to only 8% acetate oxi-
ation. Hence, steady-state acetate oxidation efficiency decreased
ith increasing feed sulfate concentration (Fig. 4). The maximum

nd minimum specific acetate oxidation rates of 443 and 46 mg
cetate/(g VSS day) were attained at Periods III and V, respectively.
etween days 134 and 144, the reactor was not fed and it was oper-
ted in a batch mode to follow the acetate oxidation in the absence
f ethanol. During 10 days of batch operation no significant acetate
xidation, COD removal and sulfate reduction were observed. There
ay be three possible reasons of observing less acetate oxida-

ion efficiency at 10,000 mg/L sulfate feed. One is high sulfate and
rganic loading. Second is relatively high dissolved sulfide concen-
ration and the last one is high metal concentration (677 mg/L) in
he feed. There are several studies on dissolved sulfide toxicity on
ulfate-reducing bacteria (for a review, see Kaksonen and Puhakka
2]) and it is well known that acetate oxidation efficiency decreases
t high sulfide concentration [18]. As for metal inhibition, Herrera et
l. [19] reported that the metal-sulfide precipitates may adversely
ffect the activity of SRB and the mechanism of inhibition is that
etal-sulfides act as barriers preventing the access of the reactants

sulfate, organic matter) to the necessary enzymes [7]. In order
o understand the impact of zinc precipitate on acetate oxidation
erformance, the reactor was fed with 10,000 mg/L sulfate in the
bsence of zinc between days 144 and 159 (Period VI). Omitting
f zinc from the reactor feed did not improve the acetate oxida-
ion performance of the reactor. Hence, high concentration of heavy

etal in the feed of the reactor may not be the reason of low acetate
xidation efficiency. Not observing acetate oxidation during 10 days
f batch operation (between days 134 and 144) and in the absence
f zinc (between days 144 and 159) may be the sign of wash-out of
cetate oxidizing SRB during high sulfate and COD loadings. Hence,
cetate oxidation is the limiting step of sulfidogenic treatment of
cidic and zinc-containing wastewater in a CSTR.

High zinc removal efficiencies (≥99%) were obtained throughout
he reactor operation (Fig. 3D). After day 93 (Period V) when sulfate

nd zinc concentrations were increased to 10,000 and 677 mg/L,
espectively, no extra effort was put on removing excess dissolved
ulfide due to high Zn concentration (677 mg/L) in the feed. Zinc
emoval efficiency between days 93 and 144 (feed Zn 677 mg/L)
as 99.2 ± 0.8% (Table 4). Although dissolved sulfide concentration
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0.137 ± 0.03 mg VSS/mg sulfate reduced. Kaksonen et al. [4]
reported 0.053–0.074 mg VSS/mg sulfate reduced in mesophilic flu-
idized bed reactors. In another study, Sahinkaya et al. [5] reported
around 0.1 mg VSS/mg sulfate reduced in FBRs fed with ethanol
and operated at 8 and 65 ◦C. Relatively higher value in the present
ig. 5. pH (A), alkalinity (B) and dissolved sulfide (C) variations in CSTR (line (A)
hows feed pH values and arrows show external alkalinity additions).

n the reactor was very high, 428 ± 63 mg/L (days 93–144) (Fig. 5C),
here was still measurable Zn concentration (3.7 ± 1.5 mg/L) at the
ffluent of the reactor. The reason of this observation may be the
ormation of small ZnS particles at high sulfide concentrations that
an pass through the 0.45 �m membrane filter [20]. Hence, at high
ulfide concentrations measured Zn concentrations consist of both
oluble Zn and ZnS particles that pass through the 0.45 �m mem-
rane filter.

The setleability of zinc-sulfide particles was also studied when
eed zinc concentration was 325 mg/L. The total zinc concentration
n cleared liquid after 2 h settling was only 17.8 mg/L, correspond-
ng to 94.5% removal. Hence, zinc-sulfide particles can easily be

ecovered at the effluent using a settling tank.

Except start-up phase of the reactor (days 0–28), the feed pH
as kept between 4.4 and 5.5. The effluent pH increased to neutral

alues due to alkalinity production from acetate oxidation when F
aterials 164 (2009) 105–113

ulfate concentration was 5000 mg/L or less. For example, feed pH
alue of 5.25 was increased to around 8.5 at the effluent when feed
ulfate and zinc concentrations were 2000 and 65 mg/L (Fig. 5A).
owever, when sulfate concentration was 10,000 mg/L, alkalinity
roduction decreased due to much less acetate degradation (Fig. 4)
nd external alkalinity addition was necessary to keep pH at neutral
alues (Fig. 5B). Alkalinity was added externally as bicarbonate salt
3000 mg CaCO3) (arrows in Fig. 5B) when the reactor pH decreased
o below 6.7. Hence, at high loadings, low acetate oxidation may
esult in pH decrease in the reactor. As most known SRB are very
ensitive to even mild acidity [21], sulfate reduction-based reac-
ors treating acidic and metal-containing wastewater should be

onitored carefully.
After 1 week of reactor operation (days 0 and 7), methane

roduction was not observed. This showed that MA was washed
ut due to low SRT (10 days) in CSTR or H2S toxicity. Unionized
ydrogen sulfide causes inhibition as only neutral molecules can
ermeate well through the cell membrane. It is known that MA

s much more sensitive to sulfide compared to SRB [22]. With the
limination of methane producers, ethanol is available for sulfate
educers and fermentative bacteria. Electron flow from carbon oxi-
ation to sulfate reduction throughout the reactor operation is
resented in Fig. 6. The electron flow to sulfate reduction was calcu-

ated assuming that 0.67 mg COD is required to reduce 1 mg sulfate
ccording to Eq. (1). Percent electron flow to sulfate reduction
ncreased with increasing sulfate loading and it averaged 83 ± 13%.
he rest of the electrons were most likely coupled with fermenta-
ive reactions as methanogenesis was insignificant.

.2. Biomass concentration and yield

The variations of VSS and SS concentrations thought the reactor
peration are presented in Fig. 7. The steady-state VSS values are
lso presented in Table 4. The ratio of VSS/SS was around 0.56 in the
bsence of zinc between days 13 and 28. When zinc concentration
as increased to 65 and 677 mg/L, the VSS/SS ratio decreased to

round 40 and 30%, respectively, due to metal precipitates in the
eactor.

The variation of yield coefficient (Table 4) (0.1–0.16 mg
SS/mg sulfate reduced) at different sulfate concentrations
as statically insignificant and average yield coefficient was
ig. 6. Percent electron flow to sulfate reduction throughout the CSTR operation.
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tudy is due to much lower sludge retention time (10 days) in CSTR
ompared to attached growth reactor systems.

.3. Modelling results

The applicability of ANN was investigated to predict the
erformance of CSTR-based sulfate-reducing bioprocess treating
inc-containing (65–677 mg/L) wastewater. In the modelling study,
he effluent sulfate, COD, acetate and zinc were predicted. First of

ll, 12 BP algorithms were compared to select the best fitting one.
n the selection of BP algorithm, the number of neurons was kept
onstant at 20. Training results are provided in Table 5. The per-
ormance of the BP algorithms was evaluated with the root M.S.E.
nd determination coefficient (R) between the modelled output and

A
p
a
f

able 5
omparison of back-propagation algorithms for predicting effluent sulfate, acetate, COD a

P algorithms Sulfate Acetate

R M.S.E.a R M.S.E.

rainlm 0.998 5.7 × 10−26 0.993 0.00172
raincgp 0.997 0.0031 0.983 0.011
raingd 0.856 0.1558 0.963 0.0449
raingda 0.991 0.0199 0.984 0.0150
raingdx 0.95 0.0455 0.77 0.533
rainrp 0.989 0.0068 0.99 0.0072
rainscg 0.989 0.0056 0.985 0.0122
rainoss 0.986 0.0075 0.988 0.0120
raincgf 0.997 0.0027 0.991 0.0100
rainbfg – – 0.987 0.0084
raingdm 0.42 3.793 0.828 0.769
raincgb 0.989 0.0074 0.985 0.0082

a Mean square error.

able 6
-Values and mean square errors at different neuron numbers for predicting effluent sulfa
sed)

euron number Sulfate Acetate

R M.S.E.a R M.S.

3 0.991 0.00742 0.990 0.01
5 0.998 8 × 10−5 0.990 0.00

10 0.998 2 × 10−4 0.994 0.00
15 0.998 9 × 10−5 0.987 0.00
0 0.998 5.7 × 10−26 0.993 0.00
5 0.997 7 × 10−27 0.978 0.00
0 0.985 9 × 10−25 0.986 0.00
0 0.927 1.3 × 10−7 0.987 0.00

a Mean square error.
aterials 164 (2009) 105–113 111

easured data set. The best BP algorithm with minimum train-
ng error and maximum R was the Levenberg–Marquardt (trainlm)
lgorithm for all effluent parameters being modelled.

After selecting best BP algorithm, Levenberg–Marquardt
trainlm) algorithm, the number of neurons was optimized keep-
ng all other parameters constant (Table 6). For all output variables,
he squared mean error decreased for the training set with increas-
ng neuron number. However after optimum neuron number, the
quared mean errors increased or did not change significantly. The
ptimum neuron number was 20 for effluent sulfate, COD and
cetate predictions, whereas, it was 40 for zinc prediction (Table 6).
he optimum algorithm and neuron numbers were shown in bold
n Tables 5 and 6.

Fig. 8 illustrates training, validation and test M.S.E. and the lin-
ar regression analysis between measured (T) and predicted (A)
alues for effluent sulfate, COD, acetate and zinc. The test and the
alidation set errors have similar characteristics, and it did not
ppear that any significant change in fitting occurred. The R-values
ere observed as 0.998, 0.993, 0.976 and 0.827 for sulfate, acetate,
OD and Zn predictions, respectively. The time course variations
f measured and the predicted data were as shown in Fig. 3 for
oth effluent concentrations and percent removals. The model data
racked the measured data closely for all output parameters (sul-
ate, acetate, COD and Zn).

The composition of the incoming wastewater may show great
ariations and the response of the bioreactor to unexpected over-
oads can be predicted using ANN. This may allow the operation
ngineer to take some measures to overcome possible process
lso model results can be used to optimize reactor’s operational
arameters to improve performance. Using the ANN predictions,
lkalinity addition can be automated to maintain good process per-
ormance in a Zn recovering sulfidogenic bioreactor system.

nd zinc

COD Zn

R M.S.E. R M.S.E.

0.976 0.00075 0.782 4.8 × 10−18

0.955 0.0398 0.594 0.1782
0.928 0.1010 0.754 0.385
0.971 0.0254 0.75 0.374
0.914 0.0997 0.685 0.652
0.966 0.0199 0.72 0.2947
0.947 0.028 0.738 0.1290
0.976 0.01557 0.671 0.1597
0.937 0.04819 0.785 0.1046
0.978 0.0097 0.769 0.0627
0.434 1.822 0.398 1.344
0.969 0.0277 0.771 0.0611

te, acetate, COD and zinc concentrations (Levenberg–Marquardt BP algorithm was

COD Zn

E. R M.S.E. R M.S.E.

058 0.899 0.0234 0.744 0.3317
54 0.954 0.02168 0.758 0.3240
30 0.974 0.00643 0.667 0.0561
19 0.958 0.01404 0.656 0.00258
172 0.976 0.00075 0.782 4.8 × 10−18

06 0.946 0.00154 0.63 0.01509
02 0.947 0.00011 0.797 1.4 × 10−27

03 0.947 0.00037 0.827 4 × 10−31
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Fig. 8. Training, validation, and test square mean errors (left column) and linear regression between the network outputs and the corresponding targets (right column) for
Levenberge–Marquardt algorithm for effluent sulfate (A and B), COD (C and D), acetate (E and F) and zinc (G and H) predictions.
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. Conclusions

In the study, ethanol supplemented CSTR fed with sulfate
nd zinc-containing wastewater enriched sulfate-reducing bacte-
ia. MA was washed out within 1 week of operation and average
lectron flow to sulfate reduction was over than 80%. Sulfate
emoval efficiency was 70% at feed sulfate concentration of 2 g/L
nd it steadily decreased with increasing feed sulfate concentra-
ion and reached 40% at 10 g/L. COD removal efficiency at 2 g/L
eed sulfate concentration was over than 94%, whereas, it steadily
ecreased due to the accumulation of acetate at higher loadings.
ence, acetate oxidation is the rate-limiting step in sulfidogenic

reatment of metal and sulfate containing wastewater. The alka-
inity produced from acetate oxidation increased wastewater pH
emarkably when feed sulfate concentration was 5 g/L or lower.
owever, external alkalinity supplementation was required due

o low acetate oxidation efficiency at higher loadings. The average
ield coefficient throughout the study was 0.137 ± 0.03 mg VSS/mg
ulfate reduced. Throughout the study, over 99% Zn removal (pre-
ipitation rate was around 70 mg zinc/(L day)) was attained even
t very high feed Zn concentrations (up to 677 mg/L) due to the
ormation of zinc sulfide precipitate. The designed, trained and val-
dated artificial neural network model gave excellent to reasonable
ts to the experimentally obtained sulfate, COD, acetate and zinc
ata.

eferences

[1] J.L. Huisman, G. Schouten, C. Schultz, Biologically produced sulphide for purifi-
cation of process streams, effluent treatment and recovery of metals in the
metal and mining industry, Hydrometallurgy 83 (2006) 106–113.

[2] A.H. Kaksonen, J.A. Puhakka, Sulfate reduction-based bioprocesses for the treat-
ment of acid mine drainage and the recovery of metals, Eng. Life Sci. 7 (2007)
541–564.

[3] A.H. Kaksonen, P.D. Franzmann, J.A. Puhakka, Performance and ethanol oxi-
dation kinetics of a sulfate-reducing fluidized-bed reactor treating acidic
metal-containing wastewater, Biodegradation 14 (2003) 207–217.
[4] A.H. Kaksonen, M.L. Riekkola-Vanhanen, J.A. Puhakka, Optimization of metal
sulphide precipitation in fluidized-bed treatment of acidic wastewater, Water
Res. 37 (2003) 255–266.

[5] E. Sahinkaya, B. Özkaya, A.H. Kaksonen, J.A. Puhakka, Sulfidogenic fluidized-
bed treatment of metal-containing wastewater at low and high temperatures,
Biotechnol. Bioeng. 96 (2007) 1064–1072.

[

[

aterials 164 (2009) 105–113 113

[6] E. Sahinkaya, B. Özkaya, A.H. Kaksonen, J.A. Puhakka, Sulfidogenic fluidized-
bed treatment of metal-containing wastewater at 8 and 65 ◦C temperatures is
limited by acetate oxidation, Water Res. 41 (2007) 2706–2714.

[7] V.P. Utgikar, S.M. Harmon, N. Chaudhary, H.H. Tabak, R. Govind, J.R. Haines, Inhi-
bition of sulfate-reducing bacteria by metal sufide formation in bioremediation
of acid mine drainage, Environ. Toxicol. 17 (2002) 40–48.

[8] S. Nagpal, S. Chuichulcherm, A. Livingston, L. Peeva, Ethanol utilization by
sulfate reducing bacteria: an experimental and modelling study, Biotechnol.
Bioeng. 70 (2000) 533–543.

[9] M.V.G. Vallero, J. Sipma, G. Lettinga, P.N.L. Lens, High-rate sulfate reduction at
high salinity (up to 90 mS/cm) in mesophilic UASB reactors, Biotechnol. Bioeng.
86 (2004) 226–236.

10] S. Foucher, F. Battaglia-Brunet, I. Ignatiadis, D. Morin, Treatment by sulfate
reducing bacteria of Chessy acid mine drainage and metal recovery, Chem. Eng.
Sci. 56 (2001) 1639–1645.

11] P.L. Paulo, R. Kleerebezem, G. Lettinga, P.N.L. Lens, Cultivation of high-rate sul-
fate reducing sludge by pH-based electron donor dosage, J. Biotechnol. 118
(2005) 107–116.

12] D.P.B.T.B. Strik, A.M. Domnanovich, L. Zani, R. Braun, P. Holubar, Prediction of
trace compounds in biogas from anaerobic digestion using the MATLAB neural
network toolbox, Environ. Model. Softw. 20 (2005) 803–810.

13] B. Ozkaya, E. Sahinkaya, P. Nurmi, A.H. Kaksonen, J.A. Puhakka, Biologically Fe2+

oxidizing fluidized bed reactor performance and controlling of Fe3+ recycle
during heap bioleaching: an artificial neural network-based model, Bioproc.
Biosyst. Eng. 31 (2008) 111–117.

14] H.R. Maier, G.C. Dandys, Understanding the behaviour and optimizing the per-
formance of back-propagation neural networks: an empirical study, Environ.
Model. Softw. 13 (1998) 179–191.

15] APHA, Standard Methods for the Examination of Water and Wastewater,
20th ed., American Public Health Association/American Water Works Asso-
ciation/Water Environment Federation, Washington, DC, USA, 1999.

16] M.T. Alvarez, C. Crespo, B. Mattiasson, Precipitation of Zn(II), Cu(II) and Pb(II) at
bench-scale using biogenic hydrogen sulphide from the utilization of volatile
fatty acids, Chemosphere 66 (2007) 1677–1683.

17] F. Widdel, Microbiology and ecology of sulfate- and sulfur-reducing bacteria,
in: A.J.B. Zehnder (Ed.), Biology of Anaerobic Microorganisms, John Wiley &
Sons, New York, 1988, pp. 469–585.

18] A. De Smul, J. Dries, L. Goethals, H. Grootaerd, W. Verstraete, High rates of
microbial sulfate reduction in a mesophilic ethanol-fed expanded-granular-
sludge-blanket reactor, Appl. Microbiol. Biotechnol. 48 (1997) 297–303.

19] L. Herrera, J. Hernandez, L. Bravo, L. Romo, L. Vera, Biological process for sulfate
and metals abatement from mine effluents, Environ. Toxicol. Water Qual. 12
(1997) 101–107.

20] A.H.M. Veeken, L. Akoto, L.W. Hulshoff Pol, J. Weijma, Control of the sulphide
concentration for optimal zinc removal by sulphide precipitation in a continu-

ously stirred tank reactor, Water Res. 37 (2003) 3709–3717.

21] D.B. Johnson, A.M. Sen, S. Kimura, O.F. Rowe, K.B. Hallberg, Novel biosulfidogenic
system for selective recovery of metals from acidic leach liquors and waste
streams, Miner. Process. Extractive Metall. 115 (2006) 19–24.

22] L.W. Hulshoff Pol, P.N.L. Lens, A.J.M. Stams, G. Lettinga, Anaerobic treatment of
sulfate-rich wastewaters, Biodegradation 9 (1998) 213–224.


	Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies
	Introduction
	Materials and methods
	Bioreactor
	Experimental procedure
	Modelling
	Selection of back-propagation algorithm and neuron number

	Analytical techniques

	Results and discussion
	Performance of CSTR
	Biomass concentration and yield
	Modelling results

	Conclusions
	References


